Chariton Valley Biomass Project Iowa Switchgrass Cofiring Update

2nd World Conference and Technology Exhibition on Biomass for Energy and Industry and Climate Protection Rome, Italy

AGENDA

- Focus of December 2003 Test Burn
- Test Burn Statistics & Activities Update
- Emissions Results to Date
- Status of Reporting
- What's Next ???
- Questions / Discussions

Focus of December Test Burn

- Optimize Processing Equipment Performance
- Obtain Clearer Understanding of Air Emissions
- Determine SWG effect on Fly Ash Marketability
- Obtain OGS Performance Data

Test Burn Statistics

- Co-fired 1,673 bales of SWG (753 tons).
 - Average Weight of 900 #
 - Average Moisture 12.8 %
- Gathered nearly 300 samples for lab analysis
 - Raw Coal Samples
 - SWG Samples (raw, debaled, ground)
 - Ash Samples (Bottom ash, Fly ash, Economizer)
 - Liquids (bottom ash)
- Collected 2,760# of Fly Ash for analysis & Testing
 - 160# from auto sampler (5 gallon buckets)
 - 2,600 # bulk samples (55 gallon drums)
- Generated Approx 1100 Mwh (from SWG)
- Aux Pwr Load Approx 25 kwh/ton SWG

Testing Activities Update

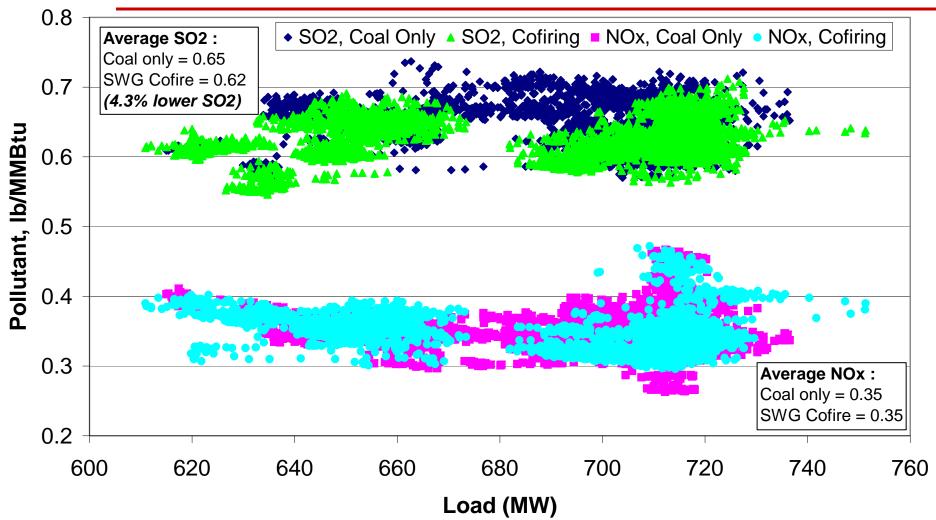
- Coal Samples Tested for:
 - Ultimate Analysis; Ash Mineral & fusion temp; LOI; Water Soluable Alkalis; RCRA Trace Elements
- SWG Samples Tested for:
 - Ultimate Analysis; Ash Mineral & Fusion Temps; LOI; Sieve Particle Distribution; Water Soluable Alkalis; RCRA trace Elements; Ash Resistivity
 - Petrography (Carbon Characterization)
 - Ash Resistivity Clean Air Engineering

Testing Activities Update


- Fly Ash Samples:
 - Sent to Iowa State Univ. for testing (03/2004)
 - Project provided a detailed description of sample collection methodology, etc
 - Uniformity & Comparative analysis
 - Compression cylinder testing (results w/in 60 days)
 - ISU pleased with volume of material provided
 - Samples Provided to IDOT from bulk samples for their analysis and testing

Summary: Emissions Results to Date

- From Continuous Emissions Monitoring System:
 - 6000 minutes of emissions data collected and analyzed
 - 8 am 6 pm on all test days
 - 53 hours cofiring, 47 hours coal-only
 - Average heat input from switchgrass was 2.5% of boiler total
 - Results when cofiring:
 - Average Sulfur Dioxide (SO2) emissions decreased by over 4%
 - Average Nitrogen Oxides (NOx) emissions did not change
 - Average Stack Opacity increased by a percentage point
- From Stack Emissions Testing:
 - Particulates decreased by 4% (PM), and 14% (PM10)
 - Carbon Monoxide (CO) emissions did not change
 - Mercury emissions decreased by 7%


Chariton Valley Biomass Project--Interim Test Burn NOx & SO2 vs. Load, Ottumwa Generating Station

Continuous Emissions Monitoring System Data for: December 1 to 12, 24 hours per day


Chariton Valley Biomass Project--Interim Test Burn NOx & SO2 vs. Load, Ottumwa Generating Station

Continuous Emissions Monitoring System Data for: December 1 to 5, December 8 to 12, 8 am to 6 pm

Chariton Valley Biomass Project--Interim Test Burn NOx & SO2 vs. Cofire Rate, Ottumwa Generating Station

Continuous Emissions Monitoring System Data for: December 1 to 5, December 8 to 12, 8 am to 6 pm

Switchgrass Cofiring Rate (Heat Basis)

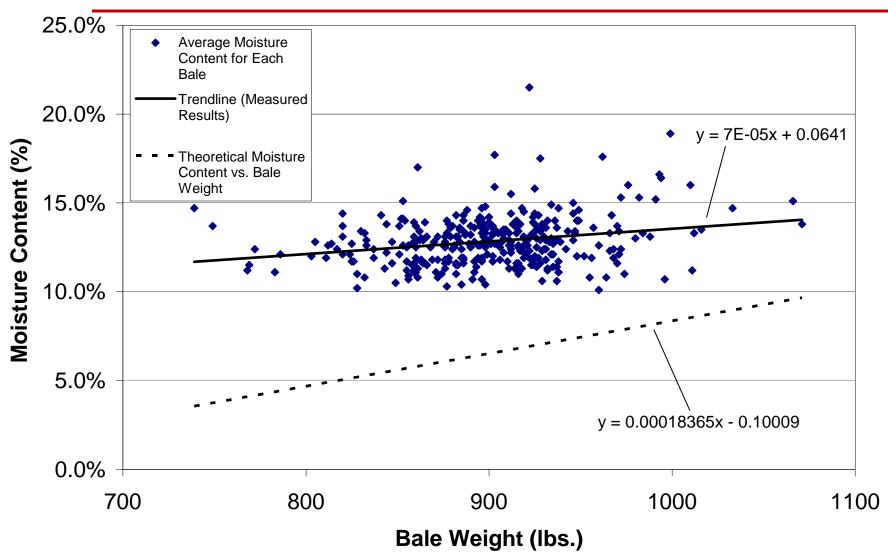
Fuel Properties

Sample Type =>	COAL			DEBALED SWITCHGRASS				
Statistic	Average	Min.	Max.	Count	Average	Min.	Max.	Count
	Proximate + Btu Analysis (As-received basis)							
Moisture, %	24.80	23.13	25.88	12	5.99	5.44	8.29	8
Vol. Matter, %	33.33	32.18	33.86	12	72.24	70.64	74.02	8
Fixed Carbon, %	36.10	35.25	37.07	12	16.99	15.88	17.52	8
Ash, %	5.45	4.11	7.95	12	4.63	4.08	5.27	8
Sulfur, %	0.31	0.29	0.33	12	0.09	0.07	0.12	8
Chlorine, %	0.00	0.00	0.00	12	0.06	0.03	0.08	8
Btu/lb (HHV)	8,942	8,680	9,114	12	7,479	7,410	7,579	8
			Proxima	ate + Btu A	nalysis (dry	/ basis)		
Vol. Matter, %	44.34	41.86	45.52	12	76.85	75.82	78.64	8
Fixed Carbon, %	48.43	47.80	49.88	12	18.23	17.03	18.71	8
Ash, %	7.24	5.49	10.34	12	4.92	4.33	5.60	8
Btu/lb (HHV)	11,893	11,292	12,107	12	7,956	7,836	8,115	8
MAF Btu/lb.	12,821	12,594	12,951	12	8,368	8,248	8,501	8
			Ultii	mate Analy	vsis (dry ba	sis)		
Ash, %	7.24	5.49	10.34	12	4.92	4.33	5.60	8
Carbon, %	69.15	65.98	70.20	12	47.99	47.58	48.51	8
Organic C, %	68.98	65.97	70.19	10	47.98	47.58	48.51	8
Inorganic C, %	0.01	0.01	0.01	10	0.01	<0.01	0.02	8
Hydrogen, %	4.70	4.37	5.04	12	5.70	5.63	5.78	8
Nitrogen, %	1.02	0.92	1.08	12	0.32	0.17	0.50	8
Oxygen, %	17.48	16.90	18.66	12	40.91	40.39	41.77	8
Sulfur, %	0.41	0.39	0.45	12	0.09	0.07	0.13	8
Chlorine, %	0.00	0.00	0.00	12	0.06	0.04	0.08	8
ppm Chlorine	27	13	45	12	627	361	850	8

Fuel Properties

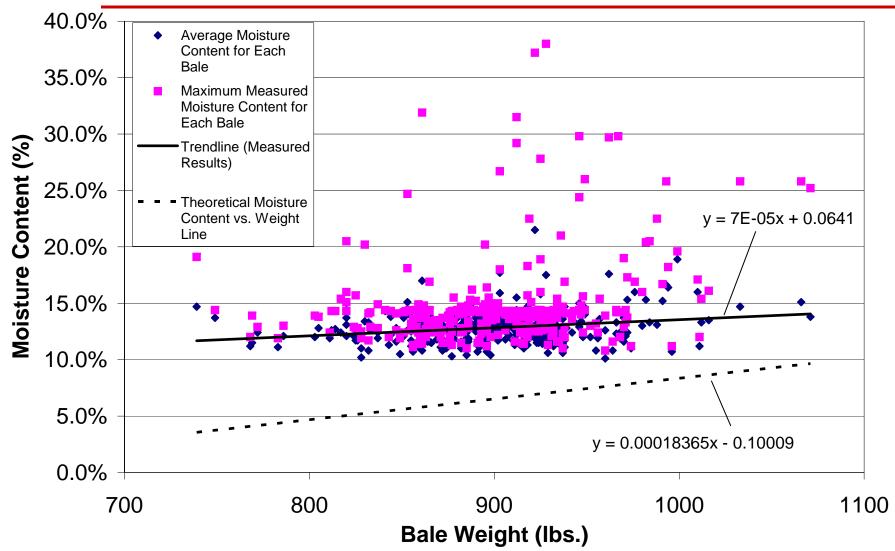
Sample Type =>	COAL				DEBALED SWITCHGRASS			
Statistic	Average	Min.	Max.	Count	Average	Min.	Max.	Count
	Water Soluable Alkali (ppm dry basis, except where noted)							
Soluble Na	490	440	520	10	55	46	60	8
Soluble K	34.3	25.2	42.6	10	3,533.4	2,365.0	4,948.0	8
		Major Ash Elements, Wt % Ash (Ignited to 750 Deg. C)						
SiO2	34.45	30.53	44.76	10	60.81	57.62	62.75	8
AI2O3	16.75	13.98	19.84	10	1.53	1.23	2.04	8
TiO2	1.37	1.17	1.91	10	0.09	0.07	0.11	8
Fe2O3	4.73	3.96	5.42	10	6.12	3.74	10.11	8
CaO	22.37	15.72	24.83	10	9.81	9.15	10.36	8
MgO	3.85	3.02	4.12	10	3.85	3.28	4.55	8
Na2O	1.25	0.98	1.41	10	0.31	0.20	0.39	8
K2O	0.37	0.15	0.77	10	8.03	6.01	9.64	8
P2O5	1.25	0.74	1.63	10	5.17	4.12	5.96	8
SO3	12.06	8.50	14.08	10	3.25	2.85	3.76	8
Oxide Total	98.45	97.65	99.73	10	98.95	97.56	100.45	8

Fuel Properties


Sample Type =>	COAL				DEBALED SWITCHGRASS				
Statistic	Average	Min.	Max.	Count	Average	Min.	Max.	Count	
	RCR	RCRA Trace Metals, ppm Dry Weight Basis (except where noted)							
Ag	0.05	0.04	0.06	10	0.01	0.01	0.01	8	
As	1.10	0.76	1.40	10	0.24	0.09	0.54	8	
Ва	294.00	261.40	325.65	10	35.32	24.35	65.86	8	
Cd	0.08	0.05	0.11	10	0.05	0.02	0.10	8	
Cr	3.72	2.55	6.31	10	6.05	3.29	8.81	8	
Hg	0.09	0.07	0.12	12	0.02	0.02	0.03	8	
Pb	2.44	2.01	2.88	10	0.73	0.38	1.11	8	
Se	0.77	0.54	1.22	10	0.79	0.53	1.22	8	

Bale Weights and Moisture Content

Bales Weighed:	347	
Average Bale Weight:	899.8	lbs.
Weighted Average Moisture Content:	12.8%	weighted average
Average Moisture Content:	12.8%	standard average
Minimum Ave. Bale Moisture Content:	10.1%	
Maximum Ave. Bale Moisture Content:	21.5%	
Maximum Moisture Probe Reading:	38.0%	single probe sample
Ave Max. Moisture Probe Reading (per bale):	14.7%	single probe sample


Bale Weight vs. Moisture Content

(Chariton Valley Biomass Project Interim Test Burn, measurements made on Dec. 10 & 11, 2003, Bales stored indoors)

Bale Weight vs. Moisture Content

(Chariton Valley Biomass Project Interim Test Burn, measurements made on Dec. 10 & 11, 2003, Bales stored indoors)

500 50.0 ٠ 450 45.0 ٠ 400 40.0 Instantaneous Demand (kW) Consumption 350 35.0 • 30.0 300 (kWh/ton) 250 25.0 **Unit Power** 20.0 200 150 15.0 Instantaneous Demand 100 10.0 **Unit Power Consumption** Log. (Unit Power Consumption) 50 5.0 - Poly. (Instantaneous Demand) 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0

Power Consumption Data--Biomass Processing

Switchgrass Feed Rate (ton/hr)

Boiler Efficiency Results

- Calculated Boiler Efficiency
 - Data used for calculations:
 - Hourly average air and gas temperatures, fuel and air flow rates, air conditions, and O2 measurements
 - Daily fuel analyses and LOI results
 - Average calculated boiler efficiency during cofire periods was 0.01% lower than coal-only periods
 - Average plant loads during for efficiency calculations were:
 - Cofire periods: 684.5 MW
 - Baseline periods: 699.5 MW
 - Average switchgrass feed rate during the cofire periods was
 8.9 tons per hour

Loss-On-Ignition Results

CVBP Interim Test Burn Loss-on-Ignition Test Results

Firing Mode	Minimum LOI, %	Average LOI, %	Maximum LOI, %	No. of Samples					
Bottom Ash Samples									
Coal-only	0.31	7.44	22.97	4					
Cofire	0.17	1.63	5.01	7					
	Economizer Ash Samples								
Coal-only	0.01	0.03	0.07	3					
Cofire	0.02	0.26	0.76	7					
Fly Ash Samples									
Coal-only	0.22	0.27	0.31	3					
Cofire	0.18	0.31	0.35	7					

Bottom Ash Observations & Tests

- Large unburned biomass particles were observed at times in bottom ash
 - Most of unburned biomass was *not* switchgrass
 - Most of unburned switchgrass was "nodes"
 - Suspected causes for unburned biomass in bottom ash
 - Foreign biomass (not switchgrass) in some bales
 - "Nodes" do not burn out as well as stems
 - Possibly also:
 - Higher moisture bales
 - Larger than desired switchgrass particle sizes

Bottom Ash Observations & Tests

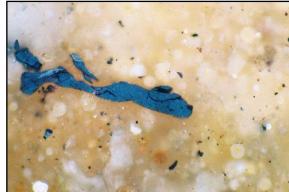
- Bottom Ash Sample Collected on a Cofire Day (not necessarily a <u>typical</u> sample for a cofire day)

Same Bottom Ash Sample, with Unburned Biomass Separated

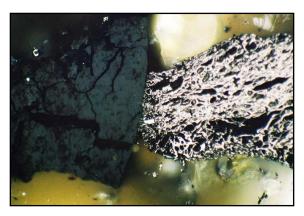
Bottom Ash Observations & Tests

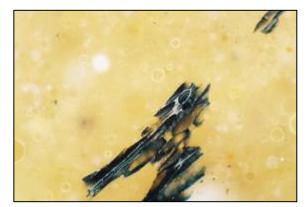


Unburned Switchgrass "Nodes" Large Unburned Biomass (Non-Switchgrass)


Petrography Results

- Consol Energy used petrography tests/methods to determine the origin of carbon forms in ash samples
- Yielded estimates of % volume of total unburned carbon in ash, and fractions from coal and biomass
- Origin (coal or grass) and nature (unburned or char) of carbon forms are recognizable by trained petrographer under microscope (500x)
- Grass forms are more cellular


Petrography Image Samples


Coal Char, Fly Ash 12/11/03

Unburned Coal, Econ. Ash 12/11/03

Unburned Coal & Char, Bottom Ash 12/7/03

Grass Char, Fly Ash 12/11/03

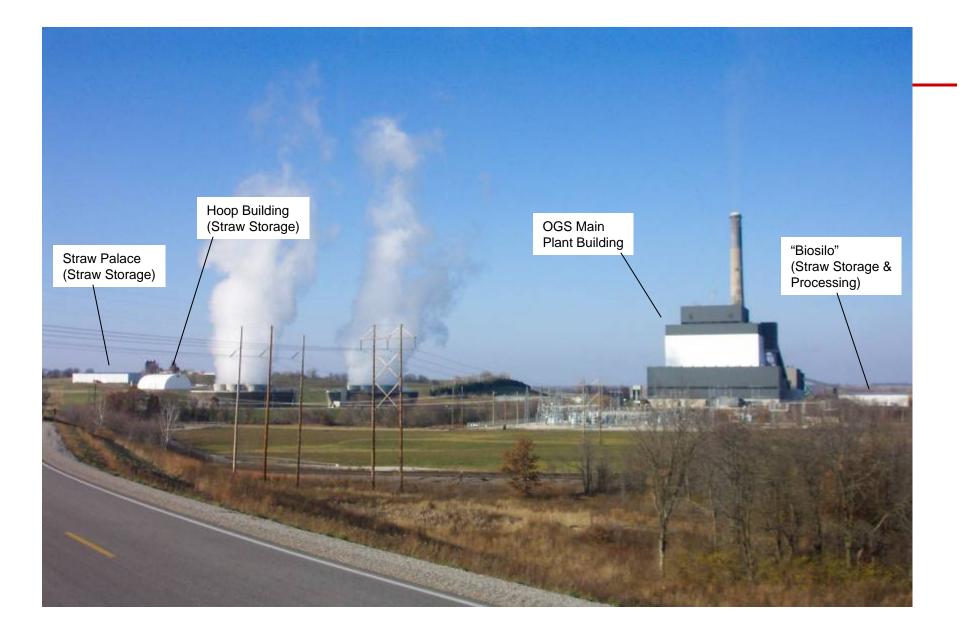
Grass Char, Econ. Ash 12/11/03

Grass Char, Bottom Ash 12/11/03

Petrography Results

- Highest carbon in bottom ash occurred on a coal-only day
- Little or no detectable unburned switchgrass in fly ash and economizer ash

Sample Date	Test Activity	Sample Description	Total Petrographic Carbon Forms, Vol %	% Carbon Forms from Grass	% Carbon Forms from Coal
12-05-03	Cofire, wet switchgrass from outdoor storage	BOTTOM ASH	1.6	31	69
12-07-03	Coal only	BOTTOM ASH	15.6		100
12-10-03		BOTTOM ASH	0.6		100
12-11-03		BOTTOM ASH	9.2	93	7
12-10-03	Cofire, "dry" switchgrass	ECONOMIZER ASH	2.6	8	92
12-11-03	from indoor storage	ECONOMIZER ASH	0.2		100
12-11-03		FLY ASH	0.3		100
12-11-03		FLY ASH	0.1		100


Status of Reporting

Report Submittal to IDNR – Mid February, 2004

- Draft Report Submitted February 13, 2004
- Final Report to be submitted upon receipt of laboratory analysis and report (May)
- Report to USDOE June, 2004
- Ash Report (from ISU) September 2004

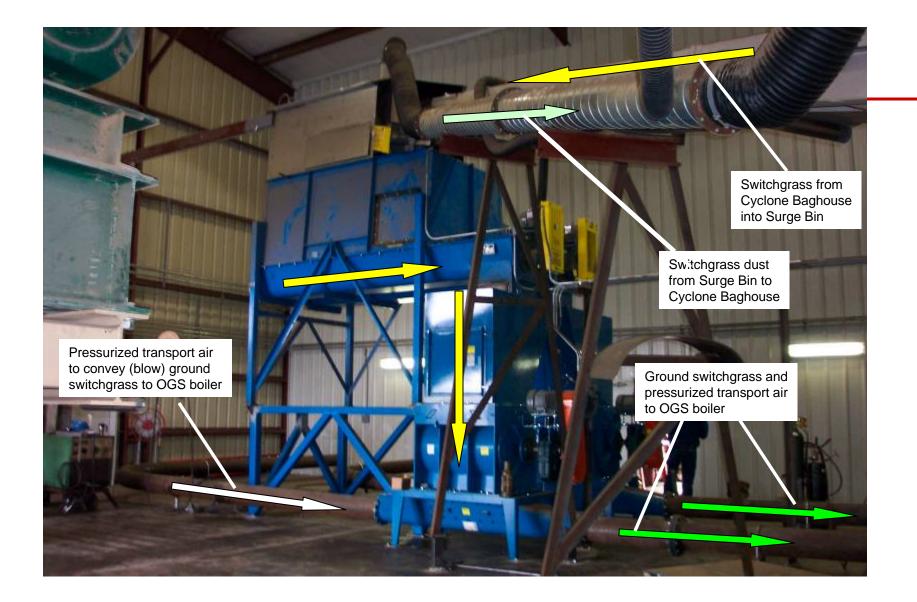
So....What's Next ???

- Focus on completion of Fly ash testing and acceptability by IDOT
- Completion of Emissions reporting to IDNR
- Completion of fly ash resistivity testing / determination of effect on ESP performance
- Continue efforts to optimize processing equipment performance and "layout".
- Perform additional "testing" to better understand SWG/Opacity relationship (cold air testing)
- USDOE Has approved funding for relocation of SWG processing facility to top of hill
- Long Term Test Burn now targeted for late 2005

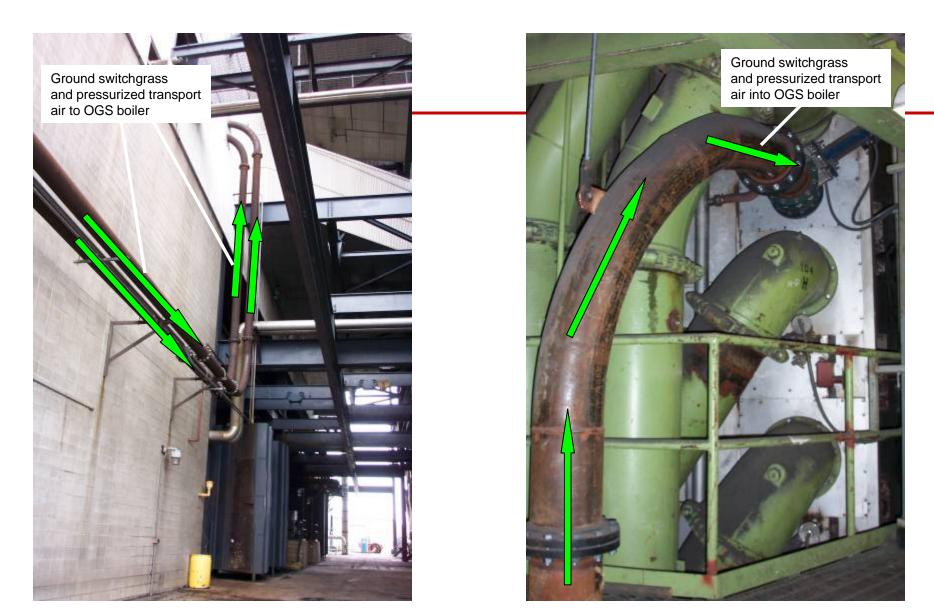
Bale Infeed Conveyor

Loading 1000 lb. Bale

400 Hp De-baler



Cutter blade on the D-Stringer.



Secondary Grinder Internals

Surge Bin, Rotary Airlocks, and Switchgrass Blow Lines to Boiler.

Switchgrass Blow Lines Transporting Ground Switchgrass into Boiler House (left) and Boiler (right).

Debaled and Ground Switchgrass

Switchgrass System Control Room.

Automated Flyash Sampler

Future Plans and Possibilities

- Long Term Co-fire Testing 2005/2006
 - 2000+ hours (90 days) testing
 - Co-fire up to 25,000 Tons of SWG @ 12.5 TPH
 - Boiler performance / Operational Data
 - Combustion Optimization (RMT/CI)
 - Corrosion, Erosion, Slagging, Fouling data
- Commercial Operation
 - Depending upon economics
 - SWG Storage / Processing Facility Located off site
 - Alliant & Prairielands Fuel Supply Agreement
 - 100,000 200,000 TPY SWG co-fired @ OGS
 - SWG delivered to OGS boiler via pneumatic blow line

CVBP Process Facility (Bale Storage and Reclaim Section)

Emissions Monitoring (GE)

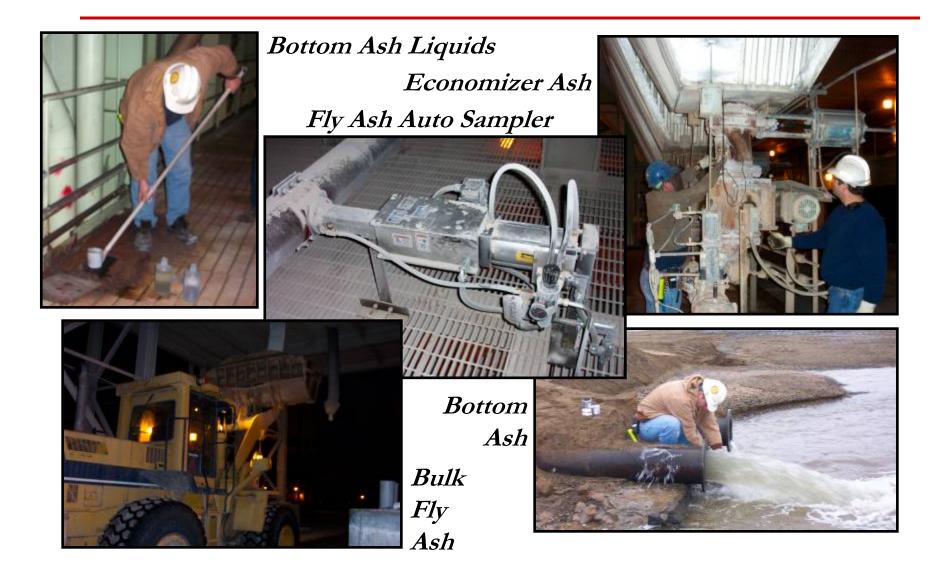
Emissions Probe In Outlet Duct

GE's Mobile Emissions Lab

GE's Emissions Vans at Stack



Emissions Equipment at OGS


CEMS Probes In Outlet Duct

Portable Emissions Monitor

Other Sampling

